Major and Minor Ellipse Axes from a diameter and two Lengths

The diagram below presents geometry for the inside of a conical - elliptic bore. It's purpose is to derive major and minor axes corresponding to measurements of the form:

$$
(d, x, y)
$$

where d is the distance between the sides of the bore at either x or y
$\mathrm{x} \quad$ is the length into the bore when the distance is measured along a plane perpendicular to a line through the centre of the tone holes
y is the length into the bore when the distance is measured along a plane parallel to a line through the centre of the tone holes

Because a single tuple in the above form is not sufficient to describe the angle of conicity of the bore, two such tuples are required i.e. $\left(\mathrm{d}_{1}, \mathrm{x}_{1}, \mathrm{y}_{1}\right)\left(\mathrm{d}_{2}, \mathrm{x}_{2}, \mathrm{y}_{2}\right)$. In the following diagram the second measurement tuple is closer to the wider end of the bore than the first.

Figure 1: Bore Geometry

In the above, the following relationships are true:

$$
\begin{aligned}
& x_{1}>y_{1} \\
& d_{2}>d_{1} \\
& y_{1}>y_{2} \\
& x_{1}>x_{2}
\end{aligned}
$$

The goal of the exercise is to find an expression for $\Delta \mathrm{d}_{1}$. We make use of the fact that the triangles ABC and $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$ are similar i.e. all angles are the same. Based on this, the following is true:

$$
\frac{\Delta d_{1}}{\Delta x_{1}}=\frac{\Delta d_{12}}{\Delta x_{12}} \quad \text { or } \quad \frac{\Delta d_{1}}{\left(x_{1}-y_{1}\right)}=\frac{\left(d_{2}-d_{1}\right)}{\left(x_{1}-x_{2}\right)}
$$

Formula 1:

Solving for $\Delta \mathrm{d}_{1}$ (We know everything else):

$$
\Delta d_{1}=\frac{\left(d_{2}-d_{1}\right) \cdot\left(x_{1}-y_{1}\right)}{\left(x_{1}-x_{2}\right)}
$$

Formula 2:

The major and minor axes (M and m) at y_{1} are:

$$
\begin{aligned}
M & =d_{1}+\frac{\left(d_{2}-d_{1}\right) \cdot\left(x_{1}-y_{1}\right)}{\left(x_{1}-x_{2}\right)} \quad \text { or } \quad M=\frac{d_{1} \cdot\left(x_{1}-x_{2}\right)+\left(d_{2}-d_{1}\right) \cdot\left(x_{1}-y_{1}\right)}{\left(x_{1}-x_{2}\right)} \\
m & =d_{1}
\end{aligned}
$$

Formula 3:

Similar expressions may derived for ellipses at $\mathrm{x}_{1}, \mathrm{x}_{2}$ and y_{2}.

